 PuRrESTORAGE

Scraping FlashBlade Metrics Using a
Prometheus Exporter

Prometheus is an open-source time-series database used for monitoring and
alerting. The data is scraped in regular intervals from endpoints using client
libraries called exporters that expose the metrics in a Prometheus format. A
Prometheus server then collects those metrics via HTTP requests and saves them
with timestamps in a database.

Prometheus can be used to collect metrics about the CPU, memory, and network
utilization of an Al cluster. The short instructions for adding Prometheus to a
Rancher-based Kubernetes cluster can be found here. By default, that Prometheus
application will collect metrics from the exporters native to the cluster - such as
usage stats for all the Kubernetes pods.

1/7

https://blog.purestorage.com/products/scraping-flashblade-prometheus-exporter/
https://blog.purestorage.com/products/scraping-flashblade-prometheus-exporter/
https://prometheus.io/docs/instrumenting/exporters/
https://support.purestorage.com/Solutions/Kubernetes/Rancher_and_Pure_Storage_Orchestrator
https://blog.purestorage.com/

 PURESTORAGE

However, you might have additional infrastructure in your Al cluster beyond the
compute servers that the Kubernetes pods are running on. For example, you
might have shared storage that needs to be monitored as well.

Training and inference pipelines often include a variety of applications like Kafka
for message queuing and JupyterHub for exploring models. Having a shared data
platform like Pure Storage FlashBlade™ is beneficial for these pipelines because it
enables:

= easy access to shared datasets
= seamless collaboration among data scientists

= a cost-effective way to scale capacity and performance as needed

In this blog post, we’ll cover the steps to use our Pure Exporter for FlashBlade so
you can have a single pane of glass for monitoring your entire Al cluster.

Kubernetes Cluster

I |
1 |
Pure | ! ! | Alert
1 |
|
by

1
: Email,
! Prometheus Server Mot !, PagerDuty,
o 9 Chat
|

e e o e Em mm o Em m Em = w e e - -

WW
UL

Prometheus

As shown in the diagram above, the Pure Exporter runs in a Kubernetes pod. Kick
off a workload with the Pure Exporter docker image, which can be downloaded
here.

217

https://www.purestorage.com/products/unstructured-data-storage.html
https://github.com/PureStorage-OpenConnect/pure-exporter
https://www.purestorage.com/solutions/analytics-and-ai/artificial-intelligence.html
https://hub.docker.com/r/genegatpure/pure-exporter
https://blog.purestorage.com/

 PURESTORAGE

Edit Workload

pure-exporter & Scalable deployment of 1

genegatpure/pure-exporteriatest default

9491tcp01 9491 TCP NodePort (On every node)

+ Add Port

ped

Once the Pure Exporter is running as a pod, note the cluster-IP and port values for
the pure-exporter. You can find them by running “kubectl get svc"”:

[crayon-681e52153a7ce402076559/]

Next, edit the Prometheus server configmap to include a new job to scrape the

FlashBlade metrics.

[crayon-681e52153a7db436406448/]

FlashBlade will be now listed as a target in the Prometheus server and ready to
scrape. Prometheus now knows where to find the “/metrics/flashblade” endpoint

on the Pure Exporter pod.

So, now the overall flow looks like this:

3/7

https://blog.purestorage.com/

 PURESTORAGE

Kubernetes Cluster

Storage target discovery using
Pure Exporter and port 9491

Pure Exporter

I
O : : PSO HTTP request (“scrape”)
o 9 1 : sent from Prometheus
' g g 9 : to Pure Exporter
l]

10.42.255.64:9491

A A) s (PP (I
0 v v W

Prometheus Server

Pure Exporter pulls metrics
from FlashBlade using REST APIs
and dumps in /metrics/flashblade

Metrics data is saved in
Prometheus database stored
on FlashBlade

o i1 PI'H []] IIHII (1[I IlI'IIIIIIIIIHIIH'IIIIHHI
i oo [t

Prometheus

The Prometheus server discovers the FlashBlade through the Pure Exporter and
port 9491 in the Kubernetes cluster. The Pure Exporter gathers the FlashBlade
metrics data using RESTful APls . The collected data is then stored in the
Prometheus database.

(In fact, that database is stored in the FlashBlade itself. Storing the monitoring
data on FlashBlade provides the ability to scale as Al workloads increase.
FlashBlade also provides data reduction of ~2:1 for Prometheus database!)

Once the metrics are stored in the Prometheus database, it is easy to query.

- 1h + « until » Res. (s) O stacked

-
e o o e A e T RO PN e D O O [A RO N TN

Here, we're visualizing a metric directly from Prometheus, but it's easy to pull the

417

https://purity-fb.readthedocs.io/en/latest/
https://blog.purestorage.com/

 PURESTORAGE

data forward into Grafana for beautiful, easy-to-create dashboards. We'll review
Grafana integration into the Al Data Hub in our next post in this series.

To summarize, Pure Exporter allows Prometheus to scrape metrics from Pure
Storage data platforms using RESTful APIs.

= No additional scripting needed to monitor storage along with the rest of
the cluster.

= FlashBlade is a great place to save a cluster’s Prometheus database since
it provides the simplicity of centralized logs and performant scalability.

The next post will demonstrate how to configure and integrate a FlashBlade
metrics dashboard into Grafana for the Al cluster. Visit the blog for our next posts
in the series over the coming weeks:

= Automating an inference pipeline in a Kubernetes Cluster
= Tuning networking configuration of a Kubernetes-based Al Data Hub

= Integrating Pure RapidFile Toolkit into Jupyter notebooks

Updated Information

1. Transition to OpenMetrics Exporter:

» Deprecation of Pure Exporter: The previously utilized Pure Exporter has
been deprecated in favor of the Pure Storage OpenMetrics Exporter. This
new exporter offers enhanced performance, improved security, and better
integration with modern monitoring stacks. Users are encouraged to
transition to the OpenMetrics Exporter to take advantage of these
improvements. github.com

- Key Advantages:

5/17

https://github.com/PureStorage-OpenConnect/pure-exporter?utm_source=chatgpt.com
https://blog.purestorage.com/

 PURESTORAGE

= Standardization: Aligns with the OpenMetrics standard, ensuring
compatibility with a wide range of observability tools.

 Enhanced Security: Improved authentication mechanisms,
including support for bearer tokens and configuration files for API
tokens.

= Modular Design: Provides specific endpoints for different metrics
categories, allowing for more granular monitoring.

2. Updated Deployment and Configuration Steps:

= Deployment: The OpenMetrics Exporter can be deployed using Docker.
Build the Docker image from the provided Dockerfile:bashCopyEditdocker
build -t pure-fb-ome:<VERSION> . Replace <VERSION> with the
desired version tag.

= Configuration: Authentication is managed through a configuration file
specifying the FlashBlade address and API
token:yamlICopyEditarray id 1: address: <ip-address-or-
hostname-1> api token: <api-token-1> array id 2:
address: <ip-address-or-hostname-2> api token: <api-
token-2> This file is passed to the exporter at runtime, enhancing
security by avoiding hard-coded credentials.

= Prometheus Integration: Configure Prometheus to scrape metrics from
the OpenMetrics Exporter by adding a new job in
the prometheus.yml configuration file:zyamlCopyEdit- job name:
‘pure flashblade' scrape interval: 30s metrics path:
/metrics/flashblade static configs: - targets:
['<exporter host>:<port>'] Ensure
that <exporter host>and <port> correspond to the OpenMetrics
Exporter’s network settings.

3. Enhanced Visualization with Grafana:

6/7

https://blog.purestorage.com/

 PURESTORAGE

= Grafana Dashboards: Leverage Grafana’s capabilities to create
comprehensive dashboards for visualizing FlashBlade metrics. The
OpenMetrics Exporter provides detailed metrics that can be used to
monitor performance, capacity, and other critical parameters.

Conclusion

Transitioning to the Pure Storage OpenMetrics Exporter offers improved
performance, security, and compatibility with modern observability tools. By
updating deployment and configuration practices, organizations can achieve more
effective monitoring of FlashBlade systems within their Prometheus and Grafana
environments.

See the previous posts in the series, Providing Data Science Environments with
Kubernetes and FlashBlade and Storing a Private Docker Reqistry on FlashBlade
S3.

7117

https://blog.purestorage.com/purely-technical/prometheus-grafana-dashboard-flashblade/?utm_source=chatgpt.com
https://blog.purestorage.com/purely-technical/data-science-kubernetes-flashblade-object-storage/
https://blog.purestorage.com/purely-technical/data-science-kubernetes-flashblade-object-storage/
https://blog.purestorage.com/purely-technical/private-docker-registry-kubernetes/
https://blog.purestorage.com/purely-technical/private-docker-registry-kubernetes/
https://blog.purestorage.com/

