
1 / 18

A Guide to Elasticsearch Snapshots

This article originally appeared on Medium.com and is republished with
permission from the author.

As Elasticsearch matures, it is no longer just used to power search boxes. Instead,
Elasticsearch is now moving to the core of data-powered systems. Business-
critical databases require a serious data protection strategy. This post focuses on
how to set up and use snapshots for Elasticsearch clusters running in Kubernetes.

This post builds upon a previous post that covers how to set up either an S3 or
NFS snapshot repository in Elastic Cloud Enterprise and FlashBlade’s
snapshot/restore performance. I will focus here on how to back up Elasticsearch
clusters running using Elastic Cloud for Kubernetes (ECK).

What you should learn from this blog:

How to configure a snapshot repository on an on-premises S3 object store

https://blog.purestorage.com/purely-technical/a-guide-to-elasticsearch-snapshots/
https://joshua-robinson.medium.com/a-guide-to-elasticsearch-snapshots-565017630638
https://medium.com/@joshua_robinson/elasticsearch-snapshots-on-s3-dcf5b0f0852b
https://www.purestorage.com/products/unstructured-data-storage.html
https://blog.purestorage.com/products/restore-elasticsearch-data-in-minutes-not-hours/
https://blog.purestorage.com/products/restore-elasticsearch-data-in-minutes-not-hours/
https://www.elastic.co/guide/en/cloud-on-k8s/current/k8s-overview.html
https://blog.purestorage.com/

2 / 18

How to set up and use a shared filesystem repository on NFS using a
dynamically provisioned ReadWriteMany PersistentVolume

Techniques to simplify setting up and using Elasticsearch snapshots in
Kubernetes

Snapshot repositories enable powerful data protection workflows: recovering from
user error and accidental deletion, restoration after infrastructure outages, and
finally, cloning indices for dev/test workflows. And because the repositories can be
shared amongst disparate clusters, you can restore and share indices across
internal and public clouds.

An example possible topology is illustrated below with two distinct Kubernetes
clusters, likely in different availability zones. Each cluster uses a local
FlashBlade® as primary storage for Elasticsearch clusters, where latency is
important, and the other FlashBlade as a primary snapshot repository. As you can
see in the diagram, the Elasticsearch cluster in site 2 can restore from the local
repository, enabling you to recover indices in a different site if needed. Not shown
here is a similar connection from both clusters to the snapshot repository on
FlashBlade A.

https://www.purestorage.com/products/file-and-object/flashblade.html
https://blog.purestorage.com/

3 / 18

Figure 1: A possible DR architecture for multiple Kubernetes clusters.
Site 2 can also use FlashBlade A as a snapshot repository.

With high performance, all-flash storage like FlashBlade, the snapshot and
restores consistently achieve multiple GB/s throughput. With this performance,
the bottleneck often moves to the Elasticsearch nodes themselves and not the
snapshot repository. Storing snapshot repositories on FlashBlade complements
the ability to run primary storage for Elasticsearch on PersistentVolumes provided
by FlashBlade. As a bonus, when using FlashBlade for the snapshot repository
(either S3 or NFS), my use case gets a 40% space reduction due to inline
compression.

S3 Snapshot Repository

For an S3 snapshot repository, I programmatically install the necessary plugin on
all Elastic nodes using init-containers. This is simpler than the alternative
approach of building a custom image with the plugin included.

Add the initContainer spec to your Elasticsearch cluster definition (yaml) for the

https://www.purestorage.com/products/unified-block-file-storage/flasharray-x.html
https://medium.com/@joshua_robinson/examples-of-putting-eck-pso-to-work-21b47750a7ed
https://medium.com/@joshua_robinson/elasticsearch-kubernetes-and-persistent-volumes-f763d9054e54
https://www.elastic.co/guide/en/elasticsearch/plugins/current/repository-s3.html
https://www.elastic.co/guide/en/cloud-on-k8s/current/k8s-init-containers-plugin-downloads.html
https://blog.purestorage.com/

4 / 18

ECK operator:

 initContainers:

 - name: install-plugins

 command:

 - sh

 - -c

 - |

 bin/elasticsearch-plugin remove --batch repository-s3

 bin/elasticsearch-plugin install --batch repository-s3

The plugin is first removed to avoid subsequent failure to install if the plugin
already exists.

By default, ECK enforces security in Elasticsearch clusters. As a result, we need to
take care in providing our S3 access keys via a second init-container. I use a
technique inspired by this blog, injecting the keys as environment variables and
piping them into the Elasticsearch keystore.

The full pair of initContainers, named “install-plugins” and “add-access-keys,”
looks as follows:

initContainers:

 - name: install-plugins

 command:

 - sh

 - -c

 - |

 bin/elasticsearch-plugin remove repository-s3

 bin/elasticsearch-plugin install --batch repository-s3

https://aldnav.com/blog/adding-s3-keys-to-elasticsearch-keystore/
https://blog.purestorage.com/

5 / 18

- name: add-access-keys

 env:

 - name: AWS_ACCESS_KEY_ID

 valueFrom:

 secretKeyRef:

 name: irp210-s3-keys

 key: access-key

 - name: AWS_SECRET_ACCESS_KEY

 valueFrom:

 secretKeyRef:

name: irp210-s3-keys <c/ode>

 key: secret-key

 command:

 - sh

 - -c

 - |

 echo $AWS_ACCESS_KEY_ID | bin/elasticsearch-keystore add
--stdin --force s3.client.default.access_key

 echo $AWS_SECRET_ACCESS_KEY | bin/elasticsearch-keystore
add --stdin --force s3.client.default.secret_key

This technique relies upon the access keys being created as secrets with a one-off
process, ideally immediately after the keys are created on the FlashBlade.

> kubectl create secret generic my-s3-keys --from-
literal=access-key=’XXXXXXX’ --from-literal=secret-
key=’YYYYYYY’

https://blog.purestorage.com/

6 / 18

By default, Elasticsearch’s snapshot operations are limited to a single thread,
which limits maximum possible performance. The maximum size of the
thread_pool can be modified on each node at startup time only through a
parameter in elasticsearch.yaml. For the ECK operator, add this parameter to the
“config” section of each nodeSet:

config:

 node.master: true

 node.data: true

 node.ingest: true

 thread_pool.snapshot.max: 8

You can now create a snapshot repository with the following example json
configuration.

{

 “type”: “s3”,

 “settings”: {

 “bucket”: “elastic-snapshots”,

 “endpoint”: “10.62.64.200”,

 “protocol”: “http”,

 “max_restore_bytes_per_sec”: “1gb”,

 “max_snapshot_bytes_per_sec”: “200mb”

 }

}

Replace the endpoint field with a data VIP for your FlashBlade and ensure that the
destination bucket has been created already. The bucket can be created through
the FlashBlade UI, CLI, or REST API.

The command guide in a later section will demonstrate the specific command to

https://blog.purestorage.com/

7 / 18

use curl to create the repository.

NFS Snapshot Repository

We can also use a shared filesystem snapshot repository as a backend to store
snapshots on NFS without requiring any additional plugin installation. This is
useful if a performant S3 object store is not available.

To create a shared filesystem with NFS, I mount a ReadWriteMany (RWX)
PersistentVolume on all of the Elasticsearch nodes. This volume is backed by an
NFS filesystem automatically provisioned by my Pure Service Orchestrator™
plugin. I could use a statically provisioned filesystem also, which would allow
connections from other clusters.

Create a PersistentVolumeClaim (PVC) in ReadWriteMany mode:

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

 name: es-snap-repo-claim

spec:

 storageClassName: pure-file

 accessModes:

 - ReadWriteMany

 resources:

 requests:

 storage: 10Ti

This PVC assumes the ‘pure-file’ storageClass is installed and configured via PSO
for FlashBlade connectivity. Otherwise, you will need to use the appropriate
storageClass.

https://www.elastic.co/guide/en/elasticsearch/reference/current/snapshots-register-repository.html
https://github.com/purestorage/helm-charts/tree/master/operator-csi-plugin
https://blog.purestorage.com/

8 / 18

Then, simply add this volume as a mount to the pod template in your
elasticsearch.yaml definition:

 nodeSets:

 - name: all-nodes

 count: 5

 podTemplate:

 spec:

 containers:

 - name: elasticsearch

 volumeMounts:

 - name: es-snap-repo-vol

 mountPath: /es-snaps

 …

 volumes:

 - name: es-snap-repo-vol

 persistentVolumeClaim:

 claimName: es-snap-repo-claim

We also need to set path.repo to this mounted path in the yaml file for the
Elasticsearch cluster:

config:

 node.master: true

 node.data: true

 node.ingest: true

 thread_pool.snapshot.max: 8

https://blog.purestorage.com/

9 / 18

 path.repo: [“/es-snaps”]

Once the cluster is configured and running, a shared
filesystem snapshot repository is created. The JSON of its
configuration is:

{

 “type”: “fs”,

 “settings”: {

 “location”: “/es-snaps”,

 “compress”: false,

 “max_restore_bytes_per_sec”: “1gb”,

 “max_snapshot_bytes_per_sec”: “1gb”

 }

}

Since both S3 or NFS work as snapshot repositories, it is important to understand
the trade-offs when choosing which to use. You will have noticed subtle
differences in installation and configuration of the repository, but the biggest
factor that favors S3 is the storage lifetime. A snapshot repository on S3 is not
tied to a single Kubernetes cluster as with a dynamically provisioned
PersistentVolume. As a result, you can snapshot and restore between entirely
different Kubernetes clusters. But you can also achieve the same portability with
statically provisioned NFS volumes. My recommendation is to prefer S3 if
available.

Snapshot Command Guide

Administering an Elasticsearch cluster means using the REST API as a primary tool
for interaction, especially if you want to build automation around your usage. The
ubiquitous command line tool curl is a versatile client for any REST API and one I
use heavily with Elasticsearch.

https://kubernetes.io/docs/concepts/storage/volumes/#nfs
https://curl.haxx.se/docs/manpage.html
https://blog.purestorage.com/

10 / 18

Instead of always manually crafting curl commands as needed, I find it very useful
to create a workflow that lets me repeat similar tasks more quickly. The first step
for that is an environment to run the curl commands and second is a catalog of
pre-built commands that can be copy-pasted, reused, and modified easily.

The jump host is a plain pod: a simple container image with curl installed by
default. To simplify further commands, I create two important environment
variables that simplify connecting to a specific cluster. The first pulls in the
Elasticsearch cluster’s password and the second encodes the cluster’s service
name. If I have two different Elasticsearch clusters, I can simply make two
versions of this pod and use the same exact command strings.

apiVersion: v1

kind: Pod

metadata:

 name: es-jump

spec:

 containers:

 - name: es-jump

 image: centos:7

 env:

 - name: PASSWORD

 valueFrom:

 secretKeyRef:

 name: quickstart-es-elastic-user

 key: elastic

 - name: ESHOST

 value: “https://quickstart-es-http:9200"

https://blog.purestorage.com/

11 / 18

 command: [“tail”, “-f”, “/dev/null”]

 imagePullPolicy: IfNotPresent

 restartPolicy: Always

Log in to this jump pod using ‘kubectl exec’ to create a new bash prompt:

> kubectl exec -it pod/es-jump bash

Alternatively, you could manually define the environment variables in any shell
that has access to the Elasticsearch cluster. The jump pod is my personal
preference.

Quick ES Snapshot Command Cheat Sheet

This cheat sheet is an adaptation of the Elastic API documentation and contains
useful commands for manually taking and managing snapshots.

First, perform basic health checks and view indices:

curl -u “elastic:$PASSWORD” -k “$ESHOST/_cat/health?v”

curl -u “elastic:$PASSWORD” -k “$ESHOST/_cat/nodes?v”

curl -u “elastic:$PASSWORD” -k “$ESHOST/_cat/indices?v”

List snapshot repositories:

curl -u “elastic:$PASSWORD” -k “$ESHOST/_snapshot?pretty”

Create a snapshot repository named “my_s3_repository”:

curl -u “elastic:$PASSWORD” -k -X PUT
“$ESHOST/_snapshot/my_s3_repository?pretty” -H ‘Content-Type:
application/json’ -d’

 {

 “type”: “s3”,

 “settings”: {

https://www.elastic.co/guide/en/elasticsearch/reference/current/snapshot-restore.html
https://blog.purestorage.com/

12 / 18

 “bucket”: “elastic-snapshots”,

 “endpoint”: “10.62.64.200”,

 “protocol”: “http”,

 “max_restore_bytes_per_sec”: “1gb”,

 “max_snapshot_bytes_per_sec”: “200mb”

 }

}

‘

Delete a snapshot repository:

curl -X DELETE -u “elastic:$PASSWORD” -k
“$ESHOST/_snapshot/my_s3_repository?pretty”

Note that if you delete a repository and then recreate it with the same storage
backend, the previously taken snapshots are still available. In other words,
deleting a snapshot repository definition does not delete the snapshots.

List snapshots in a repository:

curl -u “elastic:$PASSWORD” -k
“$ESHOST/_cat/snapshots/my_s3_repository?v”

Start a snapshot of all indices and give the snapshot a date-based name:

curl -u “elastic:$PASSWORD” -k -X PUT
$ESHOST/_snapshot/my_s3_repository/test-snapshot-$(date +”%Y-
%m-%d-%H-%M”)?pretty

Take a snapshot and wait for completion before returning:

curl -u “elastic:$PASSWORD” -k -X PUT
$ESHOST/_snapshot/my_s3_repository/test-snapshot-$(date +”%Y-
%m-%d-%H-%M”)?wait_for_completion=true&pretty

Take a snapshot of one specific index:

https://blog.purestorage.com/

13 / 18

curl -u “elastic:$PASSWORD” -k -X PUT
$ESHOST/_snapshot/my_s3_repository/test-
snapshot?wait_for_completion=true -H ‘Content-Type:
application/json’ -d’{ “indices”: “nyc_taxis” }’

List info about a specific snapshot:

curl -u “elastic:$PASSWORD” -k
“$ESHOST/_snapshot/my_s3_repository/test-
snapshot/_status?pretty”

Delete a snapshot:

curl -X DELETE -u “elastic:$PASSWORD” -k
“$ESHOST/_snapshot/my_s3_repository/test-snapshot?pretty”

Restore from snapshot into a new index:

curl -u “elastic:$PASSWORD” -k -X POST
$ESHOST/_snapshot/my_s3_repository/test-
snapshot/_restore?pretty -H ‘Content-Type: application/json’ -
d’{ “indices”: “nyc_taxis”, “rename_pattern”: “nyc_taxis”,
“rename_replacement”: “restored_taxis” }’

For testing snapshot recovery, it is often useful to delete an index “accidentally”:

curl -X DELETE -u “elastic:$PASSWORD” -k
“$ESHOST/restored_taxis?pretty”

Recall that one of the recommendations for snapshot and restore performance
was to increase the size of the threadpool at startup time. Confirm these
threadpool settings:

curl -u “elastic:$PASSWORD” -k
“$ESHOST/_cat/thread_pool/snapshot?h=name,max&v”

When using a shared filesystem repository, the REST API is exactly the same, just
specify a different repository name.

Take snapshot with my NFS repository:

https://blog.purestorage.com/

14 / 18

curl -u “elastic:$PASSWORD” -k -X PUT
$ESHOST/_snapshot/my_nfs_repository/test-snapshot?pretty

List snapshots in NFS repository:

curl -u “elastic:$PASSWORD” -k
“$ESHOST/_cat/snapshots/my_nfs_repository?v”

Restore from snapshot in an NFS repository:

curl -u “elastic:$PASSWORD” -k -X POST
$ESHOST/_snapshot/my_nfs_repository/test-
snapshot/_restore?pretty -H ‘Content-Type: application/json’ -
d’{ “indices”: “nyc_taxis”, “rename_pattern”: “nyc_taxis”,
“rename_replacement”: “restored_taxis” }’

Snapshot Lifecycle Management

Elasticsearch includes a module, Snapshot Lifecycle Management (SLM), that
automates snapshot scheduling and allows you to keep snapshots for a specified
amount of time. For newer releases of Elasticsearch (7.4+) that include SLM, this
module nicely solves the majority of snapshot use cases.

Verify that SLM is running:

curl -u “elastic:$PASSWORD” -k “$ESHOST/_slm/status?pretty”

View existing snapshot policies:

curl -u “elastic:$PASSWORD” -k “$ESHOST/_slm/policy?pretty”

Create a snapshot policy named ‘daily-snapshots’ that applies to a subset of
indices:

curl -X PUT -u “elastic:$PASSWORD” -k
“$ESHOST/_slm/policy/daily-snapshots?pretty” -H ‘Content-Type:
application/json’ -d’

{

https://www.elastic.co/guide/en/elasticsearch/reference/current/snapshot-lifecycle-management-api.html
https://blog.purestorage.com/

15 / 18

 “schedule”: “0 30 1 * * ?”,

 “name”: “<daily-snap-{now/d}>”,

 “repository”: “my_s3_repository”,

 “config”: {

 “indices”: [“plsidx-*”, “nyc_taxis”],

 “ignore_unavailable”: true,

 “include_global_state”: false

 },

 “retention”: {

 “expire_after”: “30d”,

 “min_count”: 5,

 “max_count”: 50

 }

}

‘

For more information about snapshot policy options, see the Elastic
documentation.

Check statistics for snapshot and retention operations:

curl -u “elastic:$PASSWORD” -k “$ESHOST/_slm/stats?pretty”

Finally, delete a snapshot policy as follows:

curl -X DELETE -u “elastic:$PASSWORD” -k
“$ESHOST/_slm/policy/daily-snapshots?pretty”

https://www.elastic.co/guide/en/elasticsearch/reference/current/slm-api-put.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/slm-api-put.html
https://blog.purestorage.com/

16 / 18

Custom Kubernetes CronJob

There will be occasions when SLM does not have the flexibility to do exactly what
you need. In those cases, you can manually trigger snapshots with automation
like Kubernetes jobs or CronJobs.

One example would be a daily job that pulls audit logs from network devices and
sends that data to Elasticsearch. Using a technique like below, you can also
automate taking a snapshot immediately after the index has been finished. And
perhaps this could be used to make searchable snapshots available once that
feature arrives…

An easy way to automate the creation of snapshots utilizes Kubernetes CronJobs.
Full yaml for a snapshot CronJob follows:

apiVersion: batch/v1beta1

kind: CronJob

metadata:

 name: elasticsearch-snapshotter

spec:

 schedule: “@daily”

 concurrencyPolicy: Forbid

 jobTemplate:

 spec:

 template:

 spec:

 containers:

 - name: snapshotter

 image: centos:7

https://www.elastic.co/guide/en/cloud-on-k8s/current/k8s-snapshots.html
https://kubernetes.io/docs/concepts/workloads/controllers/cron-jobs/
https://blog.purestorage.com/

17 / 18

 env:

 - name: ESPASSWORD

 valueFrom:

 secretKeyRef:

 name: quickstart-es-elastic-user

 key: elastic

 command:

 - /bin/bash

 args:

 - -c

 - |

 curl -s -i -k -u “elastic:$ESPASSWORD” -XPUT
“https://quickstart-es-http:9200/_snapshot/my_s3_repository/%3
Csnapshot-%7Bnow%2Fd%7D%3E" | tee /dev/stderr | grep “200 OK”

 restartPolicy: OnFailure

Combine snapshots with more customized workflows using this simple curl
invocation as a building block with no complicated dependencies or configuration
required.

Summary

Elasticsearch is more and more a crucial underpinning of data platforms; the need
for a data protection strategy arises. Fortunately, configuring and using snapshot
repositories is straightforward and flexible. FlashBlade as a data platform serves
as both the performant primary storage for Elasticsearch clusters and
simultaneously as a snapshot repository for backups and fast restores.

https://blog.purestorage.com/

18 / 18

https://blog.purestorage.com/

