
1 / 8

SQL Server Distributed Availability
Groups and Kubernetes

This article on SQL Server distributed availability groups originally appeared on
Andrew Pruski’s blog. It has been republished with the author’s credit and
consent. 

A while back, I wrote about how to use a cross-platform (or clusterless) availability
group to seed a database from a Windows SQL instance into a pod in Kubernetes.

I was talking with a colleague last week, and they asked, “What if the existing
Windows instance is already in an availability group?”

This is a fair question, as it’s fairly rare (in my experience) to run a standalone
SQL instance in production…most instances are in some form of HA setup, be it a
failover cluster instance or an availability group.

https://blog.purestorage.com/purely-technical/sql-server-distributed-availability-groups-and-kubernetes/
https://blog.purestorage.com/purely-technical/sql-server-distributed-availability-groups-and-kubernetes/
https://dbafromthecold.com/
https://dbafromthecold.com/2024/07/26/sql-server-cross-platform-availability-groups-and-kubernetes/
https://dbafromthecold.com/2024/07/26/sql-server-cross-platform-availability-groups-and-kubernetes/
https://blog.purestorage.com/


2 / 8

Failover cluster instances will work with a clusterless availability group, but it’s a
different story when it comes to existing availability groups.

A Linux node cannot be added to an existing Windows availability group (trust me,
I tried for longer than I’m going to admit), so the only way to do it is to use a
distributed availability group.

So let’s run through the process!

Here’s the existing Windows availability group: 

https://learn.microsoft.com/en-us/sql/database-engine/availability-groups/windows/configure-distributed-availability-groups?view=sql-server-ver16&tabs=automatic%2Csql22
https://blog.purestorage.com/


3 / 8

Just a standard, two-node AG with one database already synchronized across the
nodes. It’s that database we’re going to seed over to the pod running on the
Kubernetes cluster using a distributed availability group.

So here’s the Kubernetes cluster: 

[crayon-680b8e3b4d3ce524643003/]

https://blog.purestorage.com/


4 / 8

Four nodes, one control plane node, and three worker nodes.

OK, so the first thing to do is deploy a statefulset running one SQL Server pod
(using a file called sqlserver-statefulset.yaml): 

[crayon-680b8e3b4d3da163023066/]

Here’s the manifest of the statefulset: 

[crayon-680b8e3b4d3e0060584920/]

Like my last post, this is pretty stripped down. No resources limits, tolerations,
etc. It has two persistent volumes: one for the system databases and one for the
user databases from a storage class already configured in the cluster.

One thing to note: 

[crayon-680b8e3b4d3e3675201381/]

Here, an entry in the pod’s hosts file is being created for the listener of the
Windows availability group.

The next thing to do is deploy two services: one so that we can connect to the
SQL instance (on port 1433) and one for the AG (port 5022): 

[crayon-680b8e3b4d3e6927324562/]

Here’s the manifest for the services: 

[crayon-680b8e3b4d3f1689615004/]

https://blog.purestorage.com/


5 / 8

Note: We could use just one service with multiple ports configured, but I’m
keeping them separate here to try and keep things as clear as possible.

Using T-SQL Snapshot Backup: Point-in-time Recovery

Check that everything looks OK: 

[crayon-680b8e3b4d3f5668698908/]

Now, we need to create the master key, login, and user in all instances: 

[crayon-680b8e3b4d3fb754558993/]

Then, create a certificate in the SQL instance in the pod: 

[crayon-680b8e3b4d3fe265104116/]

Back up that certificate: 

[crayon-680b8e3b4d401077560700/]

Copy the certificate locally: 

[crayon-680b8e3b4d403033112762/]

And then copy the files to the Windows boxes: 

[crayon-680b8e3b4d406280470977/]

https://blog.purestorage.com/purely-technical/using-t-sql-snapshot-backup-point-in-time-recovery/
https://blog.purestorage.com/


6 / 8

Once the files are on the Windows boxes, we can create the certificate in each
Windows SQL instance: 

[crayon-680b8e3b4d409417275144/]

OK, great! Now we need to create a mirroring endpoint in the SQL instance in the
pod: 

[crayon-680b8e3b4d40b519141313/]

There are already endpoints in the Windows instances, but we need to update
them to use the certificate for authentication: 

[crayon-680b8e3b4d40e573813945/]

Now, we can create a one-node clusterless availability group in the SQL instance
in the pod: 

[crayon-680b8e3b4d414481442954/]

No listener here; we’re going to use the mssql-ha-service as the endpoint for the
distributed availability group.

OK, so on the primary node of the Windows availability group, we can create the
distributed availability group: 

[crayon-680b8e3b4d417724712566/]

We could use a host file entry for the URL in AG2 (I did that in the previous post),
but here, we’ll just use the IP address of the mssql-ha-service.

OK, nearly there! We now have to join the availability group in the SQL instance in
the pod: 

[crayon-680b8e3b4d41a435938521/]

And that should be it! If we now connect to the SQL instance in the pod, the

https://blog.purestorage.com/


7 / 8

database is there!

There it is! OK, one thing I haven’t gone through here is how to get auto-seeding
working from Windows into a Linux SQL instance. I went through how that works
in my previous post, but the gist is, as long as the database data and log files are
located under the Windows SQL instance’s default data and log path, they’ll auto-
seed to the Linux SQL instance’s default data and log paths.

So that’s how to seed a database from a SQL instance that is in a Windows
availability group into a SQL instance running in a pod in a Kubernetes cluster

https://dbafromthecold.com/2024/07/26/sql-server-cross-platform-availability-groups-and-kubernetes/
https://blog.purestorage.com/


8 / 8

using a distributed availability group.

https://blog.purestorage.com/

